- 產(chǎn)品描述
鉤端螺旋體IgG免疫熒光試劑盒
Leptospira IgG IFA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)人血清中的鉤端螺旋體IgG抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
鉤端螺旋體IgG免疫熒光試劑盒
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL38 | parkeri立克次體IgG ELISA | R. parkeri IgG ELISA Kit |
JL-FL39 | montanensis立克次體IgG ELISA | R. montanensis IgG ELISA Kit |
JL-FL40 | EB病毒衣殼IgG免疫熒光玻片試劑盒 | EBV Viral Capsid IgG IFA Kit |
JL-FL41 | EB病毒衣殼IgM免疫熒光玻片試劑盒 | EBV Viral Capsid IgM IFA Kit |
JL-FL42 | EB病毒早期抗原IgG免疫熒光玻片試劑盒 | EBV Early Antigens IgG IFA Kit |
JL-FL43 | Leptospira IgG IFA Kit | |
JL-FL44 | 鉤端螺旋體IgM免疫熒光試劑盒 | Leptospira IgM IFA Kit |
JL-FL45 | 果氏巴貝西蟲免疫熒光玻片 | Babesia microti IFA Substrate slide |
JL-FL46 | 果氏巴貝西蟲IgG免疫熒光試劑盒 | Babesia microti IgG IFA Kit |
JL-FL47 | 果氏巴貝西蟲IgM免疫熒光試劑盒 | Babesia microti IgM IFA Kit |
JL-FL48 | 埃立克體IgG微量免疫熒光試劑盒 | Ehrlichia canis Canine IFA IgG Kit |
JL-FL49 | 包柔氏螺旋體菌IgG免疫熒光試劑盒 | Borrelia IgG IFA Kit |
JL-FL50 | 布魯氏菌IgG免疫熒光試劑盒 | Brucella IgG IFA Kit |
JL-FL51 | 里氏新立克次體IgG免疫熒光試劑盒 | Neorickettsia risticii IgG IFA Kit |
JL-FL52 | 弓形蟲IgG免疫熒光試劑盒(檢測(cè)貓) | Toxoplasma IFA Feline IgG Kit |
JL-FL53 | 弓形蟲IgG免疫熒光試劑盒(檢測(cè)狗) | Toxoplasma IFA Canine IgG Kit |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
當(dāng)這些細(xì)胞球體在懸浮培養(yǎng)基中繼續(xù)保存了數(shù)天之后,視網(wǎng)膜上皮組織自發(fā)地向外突出,形成視泡樣的結(jié)構(gòu)。然后,突起部分的頂端又開始內(nèi)陷,形成酒杯狀結(jié)構(gòu),很像胚胎上眼睛的視杯。與活體動(dòng)物中一樣,這個(gè)源自胚胎干細(xì)胞的視杯也由內(nèi)外兩層組成:外壁是上皮層,內(nèi)壁便是視網(wǎng)膜。換句話說,在培養(yǎng)皿中,原本分開的干細(xì)胞組成的聚集體,獨(dú)自形成了有序的結(jié)構(gòu)——真是名副其實(shí)的“eyepopping”(這個(gè)詞有雙關(guān)含義,從字面上理解,就是“眼睛出現(xiàn)”,而這個(gè)詞本身的含義是“使人瞠目的”)。不像在胚胎中,培養(yǎng)皿中并沒有晶狀體和角膜。這一發(fā)現(xiàn)清楚地回答了那個(gè)存在已久的問題:原始視網(wǎng)膜的形成,是否需要晶狀體等鄰近組織施加外部作用力。至少在體外,視網(wǎng)膜的形成是一個(gè)基于細(xì)胞內(nèi)部程序的自發(fā)現(xiàn)象。
眼睛的形成
由一小塊胚胎組織發(fā)育成眼睛,會(huì)經(jīng)歷如下步驟:內(nèi)部的神經(jīng)上皮層向外凸起,形成視泡(第9天);凸起部分的外層向內(nèi)凹陷(第9.5天),晶狀體泡隨之形成(第10天);視泡的一部分發(fā)生折疊,形成視杯,與晶狀體泡共同形成視網(wǎng)膜、視神經(jīng)及zui外部的晶狀體(第10.5天)。視網(wǎng)膜包括三個(gè)不同的細(xì)胞層:視桿和視錐細(xì)胞;水平、雙極和無長(zhǎng)突細(xì)胞;視神經(jīng)節(jié)細(xì)胞。
培養(yǎng)皿中,眼睛的發(fā)育過程繼續(xù)進(jìn)行著,就像我們?cè)谂咛グl(fā)育中所看到的一樣。我們讓視杯在懸浮培養(yǎng)體系中又呆了兩個(gè)星期,組織的直徑大約長(zhǎng)到了2毫米,而且與胚胎中一樣,單層的視網(wǎng)膜上皮也演變成了層級(jí)結(jié)構(gòu),含有所有6種可在初生嬰兒的眼睛中檢測(cè)到的細(xì)胞。
這一層級(jí)結(jié)構(gòu)的外層是光感受器細(xì)胞層,zui內(nèi)層是神經(jīng)節(jié)細(xì)胞,這類細(xì)胞在機(jī)體中的作用是連接視網(wǎng)膜與大腦。如同你在真實(shí)視網(wǎng)膜中看到的一樣,在內(nèi)外兩層之間是幾層連接層,由中間神經(jīng)元(interneuron)構(gòu)成。與此前一樣,多層結(jié)構(gòu)的出現(xiàn)也是依照內(nèi)在程序完成,這個(gè)程序會(huì)決定什么細(xì)胞應(yīng)該產(chǎn)生,它們又應(yīng)該被安排在三維空間的什么位置。
我們的工作仍未結(jié)束。視杯究竟如何形成,一團(tuán)細(xì)胞究竟如何出現(xiàn)規(guī)整的結(jié)構(gòu),這些問題仍然存在。由同一物質(zhì)構(gòu)成的團(tuán)塊自發(fā)產(chǎn)生復(fù)雜形狀,這一過程叫做對(duì)稱破缺(symmetry breaking),貫穿整個(gè)胚胎發(fā)育過程。如果沒有對(duì)稱破缺,受精卵重復(fù)進(jìn)行細(xì)胞分裂只會(huì)產(chǎn)生一團(tuán)未分化的細(xì)胞,發(fā)育過程會(huì)止步不前。我們的自組織胚胎干細(xì)胞培養(yǎng)體系似乎可以作為一個(gè)理想的實(shí)驗(yàn)平臺(tái),來研究哺乳動(dòng)物胚胎形成過程中的這些玄妙機(jī)制。
Retinal epithelial tissue spontaneously protrudes outwardly to form a retinoid-like structure when these cell spheres are kept in suspension for several days. Then, the top of the protuberance begins to invaginate, forming a goblet-like structure much like the optic cup of the eye on the embryo. Like in live animals, this embryonic stem cell-derived optic cup is also composed of two layers: the outer wall is the epithelium and the inner wall is the retina. In other words, in petri dishes, the aggregates of originally separate stem cells form an ordered structure alone - a veritable "eyepopping" (the word has the double meaning, literally, "eyes appear" , And the word itself means "deception"). Unlike in embryos, there are no lenses and corneas in the petri dish. This finding clearly answers the long-standing question of whether the formation of the primordial retina requires the application of external forces to nearby tissues such as the lens. Retinal formation, at least in vitro, is a spontaneous phenomenon based on intracellular processes.
Eye formation
The development of the eye from a small piece of embryonic tissue proceeds through the following steps: The inner neuroepithelial layer bulges outward to form a retinal bulb (day 9); the outer layer of the convex portion is inwardly depressed (day 9.5), the lens The bubble then forms (Day 10); part of the optic disc folds to form a optic cup, which together with the lensblack forms the retina, the optic nerve, and the outermost lens (Day 10.5). The retina consists of three distinct layers of cells: rods and cones; horizontal, bipolar and amacrine cells; optic ganglion cells.
Petri dishes, the development of the eye continued, as we have seen in embryonic development. We left the optic cup for another two weeks in the suspension culture system, and the tissue grew to about 2 mm in diameter, and as in the embryo, the monolayer of the retinal epithelium also evolved into a hierarchical structure containing all six Cells detected in the baby's eyes.
The outer layer of this hierarchy is the photoreceptor cell layer, the innermost layer is the ganglion cells, the role of these cells in the body is to connect the retina and the brain. As you can see in the real retina, there are several tie layers between the inner and outer layers, made up of interneurons. As before, the advent of multilayered structures is also done in accordance with an internal program that determines what cells should be produced and where they should be arranged in three dimensions.
Our work is still not over. How the formation of optician exactly how a group of cells appear structured structure, these problems still exist. Complex masses of spontaneously formed clumps of the same substance, called symmetry breaking, run through the entire embryonic development. If there is no symmetry breaking, repeated fertilization of eggs will only produce a cell division of undifferentiated cells, the development process will be halted. Our self-organizing embryonic stem cell culture system seems to be an ideal experimental platform to study these mysterious mechanisms in mammalian embryogenesis.